Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient.

نویسنده

  • Rebecca Montgomery
چکیده

Studies of tree seedling physiology and growth under field conditions provide information on the mechanisms underlying inter- and intraspecific differences in growth and survival at a critical period during forest regeneration. I compared photosynthetic physiology, growth and biomass allocation in seedlings of three shade-tolerant tree species, Virola koschynii Warb., Dipteryx panamensis (Pittier) Record & Mell and Brosimum alicastrum Swartz., growing across a light gradient created by a forest-pasture edge (0.5 to 67% diffuse transmittance (%T)). Most growth and physiological traits showed nonlinear responses to light availability, with the greatest changes occurring between 0.5 and 20 %T. Specific leaf area (SLA) and nitrogen per unit leaf mass (N mass) decreased, maximum assimilation per unit leaf area (A area) and area-based leaf N concentration (N area) increased, and maximum assimilation per unit leaf mass (A mass) did not change with increasing irradiance. Plastic responses in SLA were important determinants of leaf N and A area across the gradient. Species differed in magnitude and plasticity of growth; B. alicastrum had the lowest relative growth rates (RGR) and low plasticity. Its final biomass varied only 10-fold across the light gradient. In contrast, the final biomass of D. panamensis and V. koschynii varied by 100- and 50-fold, respectively, and both had higher RGR than B. alicastrum. As light availability increased, all species decreased biomass allocation to leaf tissue (mass and area) and showed a trade-off between allocation to leaf area at a given plant mass (LAR) and net gain in mass per unit leaf area (net assimilation rate, NAR). This trade-off largely reflected declines in SLA with increasing light. Finally, A area was correlated with NAR and both were major determinants of intraspecific variation in RGR. These data indicate the importance of plasticity in photosynthetic physiology and allocation for variation in tree seedling growth among habitats that vary in light availability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability.

In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simu...

متن کامل

Nitrogen deposition does not affect the impact of shade on Quercus acutissima seedlings

Light and atmospheric nitrogen (N) deposition are among the important environmental factors influencing plant growth and forest regeneration. We used Quercus acutissima, a dominant broadleaf tree species native to the deciduous forests of Northern China, to study the combined effects of light exposure and N addition on leaf physiology and individual plant growth. In the greenhouse, we exposed Q...

متن کامل

Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia

In tropical forests, trees compete not only with other trees, but also with lianas, which may limit tree growth and regeneration. Liana effects may depend on the availability of aboveand below-ground resources and differ between tree species. We conducted a shade house experiment to test the effect of light (4% and 35% full sun, using neutral-density screen) on the competitive interactions betw...

متن کامل

Effects of light and nutrients on seedlings of tropical Bauhinia lianas and trees.

Lianas differ from trees in many life history characteristics, and we predicted that they are phenotypically more responsive to environmental variation than trees. We analyzed responsiveness to light and nutrient availability of five Bauhinia species (three lianas and two trees). Seedlings were grown in a shade house in two light regimes (5 and 25% of full sunlight) and two nutrient supply regi...

متن کامل

Seedling growth strategies in Bauhinia species: comparing lianas and trees.

BACKGROUND AND AIMS Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. MET...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2004